Onboard Cryogenic Liquid-Propellant Subcooler Based on Thermodynamic Vent for Upper-Stage Propulsion System

Author:

Banno Yuya1,Kinefuchi Kiyoshi1ORCID

Affiliation:

1. Nagoya University, Nagoya 464-8603, Japan

Abstract

Subcooling of cryogenic liquid propellants offers significant advantages for launch vehicles. Liquid subcooling can reduce the extent of cavitation generation in turbopumps, which provides advantages for upper-stage engine reignition in orbit. Additionally, liquid-propellant subcooling densifies the liquid, which can reduce the propellant tank volume and increase launch capability when it is applied during the propellant-filling phase on the ground. Here, a cryogenic propellant subcooling system derived from thermodynamic vent system (TVS) concepts is proposed. In contrast to prior approaches with TVS, the proposed method only focuses on the liquid subcooling and only requires the installation of a heat exchanger at the tank bottom, making it easily applicable to conventional upper stages and enhancing launch capability. First, ground tests were conducted using liquid nitrogen. We introduced energy efficiency to evaluate the subcooler performance, and an optimum point was found for the coolant supply pressure and Joule–Thomson orifice diameter. To investigate the advantages of the proposed method, a theoretical model for the subcooling process before engine reignition in orbit was developed based on experimental observation. The model assuming liquid hydrogen demonstrated an improved weight penalty in the proposed method compared to the conventional vent/pressurization method. A study that quantitatively addresses the enhancement of launch capability through TVS-induced liquid subcooling is unprecedented, paving the way for a new cryogenic propulsion system.

Funder

Japan Society for the Promotion of Science

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3