Effect of Co- and Counterswirl Air on Swirl Airblast Atomization

Author:

Kumar Soni Surendra1ORCID,Bharti Mohit2,Biswal Yogesh2,Kolhe Pankaj S2ORCID

Affiliation:

1. Indian Institute of Technology Kanpur, Kalyanpur 208 016, India

2. Indian Institute of Technology Hyderabad, Sangareddy 502 285, India

Abstract

For swirl-stabilized gas turbine combustor, liquid fuel distribution in the near field dictates local equivalence ratio, volumetric heat release, and heat transfer to the chamber wall, and hence its understanding is essential. The effect of inlet air aerodynamics on spray characteristics in a primary zone of a simulated gas turbine burner is studied using a phase Doppler particle analyzer, high-speed Mie scatter imaging, and an orthogonal decomposition method. By employing intense coswirl air, the luminous spray region shifts upstream to the burner exit, where lower mass flux can be observed in the central region and higher mass flux in the outer region of the spray due to the recirculation zone formation. Based on the size velocity joint probability distribution functions (JPDFs) and the individual droplet transport with acquisition time, we conclude that the recirculation zone entraps the smaller droplets and transports them from the downstream to the upstream spray region. Compared to coswirl, counterswirl air exhibits torsion instability, intensifies the concentration of drops in the central region, and improves secondary atomization. Finally, five distribution functions are curve-fitted to the experimental data to capture the atomization process accurately.

Funder

Ministry of Education, India

Science and Engineering Research Board

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3