Effect of Oxygen Dissociation on Nitric Oxide Ultraviolet Emissions

Author:

Karpuzcu Irmak T.1ORCID,Jouffray Matthew P.1,Levin Deborah A.1

Affiliation:

1. University of Illinois at Urbana–Champaign, Urbana–Champaign, Illinois 61801

Abstract

Hypersonic flow over a cylinder was modeled using the direct simulation Monte Carlo method to study how nitric oxide (NO) Ultraviolet emission profiles are a test of high-fidelity thermochemical, nonequilibrium models. For pressures found in typical hypersonic ground facilities, it was shown that the ultraviolet radiation emission profiles are very close to those calculated by assuming Boltzmann equilibrium conditions. Therefore, the NO emission profiles can be tied directly to the ground state NO concentration and flow bulk temperature. Two chemical models differing in the manner in which molecular oxygen is dissociated were considered in this classic canonical-type flow. A comparison of the predicted flowfields with schlieren imagery and surface pressure measurements from previous experiments showed good agreement; however, the sensitivity of these measurements to change in different freestream species concentrations was not found to be strong. Instead, the shapes of the predicted NO integrated emission spatial profiles were observed to be highly sensitive to whether vibrational favoring was considered in the oxygen dissociation model for the same freestream conditions.

Funder

Air Force Office of Scientific Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3