Unsteady Stream-Tube Model for Pulse Performance of Bipropellant Thrusters

Author:

Oishi Yuki1,Tauchi Soma1,Inoue Chihiro1ORCID

Affiliation:

1. Kyushu University, Fukuoka 819-0395, Japan

Abstract

We propose a theoretical model for predicting the impulse bit of bipropellant thrusters under pulse-firing operations. The present theoretical model, which considers the nonuniformity of the mixture ratios created inside the thrust chamber, extends the stream-tube approach, which is limited to the prediction of the steady performance. In pulse-firing operation, the fuel or the oxidizer alone can be injected in isolation due to the mismatched injection timing before the rated injection, which leads to the deterioration of performance as compared with the steady operation. The present approach (the unsteady stream-tube model) successfully implements a time-dependent stream-tube structure inside the thrust chamber, allowing for the prediction of the impulse bit as a straightforward function of the injection conditions. Three different pulse-firing tests using distinct hypergolic propellants demonstrate the validity of this model, typically reproducing the notable trend of deterioration in the impulse bit in the short-pulsed mode. We also examine the time-averaged specific impulse and mass flow rate to improve the impulse bit during short-pulsed operations.

Funder

Japan Society for the Promotion of Science

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Reference33 articles.

1. History of Liquid Propellant Rocket Engines in the United States

2. Hayabusa—Its technology and science accomplishment summary and Hayabusa-2

3. Mars reconnaissance lander: Vehicle and mission design

4. SeedhouseE., SpaceX: Making Commercial Spaceflight a Reality, Springer Science and Business Media, New York, 2013, p. 45. 10.1007/978-1-4614-5514-1

5. Hayabusa2 Mission Overview

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3