Design-Variable Hypernetworks for Flowfield Emulation and Shape Optimization of Compressor Airfoils

Author:

Duvall James1,Joly Michael2,Duraisamy Karthik1,Sarkar Soumalya2

Affiliation:

1. University of Michigan, Ann Arbor, Michigan 48104

2. Raytheon Technologies Research Center, East Hartford, Connecticut 06108

Abstract

Deep-learning-based flow emulators are used to predict the flowfield around parametrically defined airfoils and then used in place of Reynolds-averaged Navier–Stokes solvers in design optimization. The flow emulators are based on a) decoder convolutional neural networks, which generate solution snapshots in the computational domain, and b) design-variable hypernetworks, which provide pointwise predictions in physical space. The flow emulators are used to predict parametric subsonic and transonic compressor flows in an industrial design use case with baseline geometry corresponding to the NASA rotor 37. Both methods are effective in representing unseen subsonic airfoil flowfields, with mean errors less than 1%. The hypernetwork-based method generalizes more effectively under transonic conditions and is used in place of computational fluid dynamics (CFD) to drive shape optimization at varying rotor speeds. Under transonic conditions and at nominal speed, the emulator-driven optimization achieves the same optimal design as CFD in a reduced number of iterations at a fraction of the online computational cost while providing similarly performing designs at off-nominal conditions. It is remarked that once the emulator is trained once offline, it can be used online to conduct many different design optimizations, e.g., with different objective functions, constraints, and tradeoffs. These results establish the utility of design-variable hypernetworks as a viable emulation and optimization tool in practical industrial design.

Funder

Advanced Research Projects Agency - Energy

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3