Theoretical and Experimental Analysis of Flight-to-Ground Scaling for Axisymmetric and Planar Bodies

Author:

Leiser David1ORCID,Hufgard Fabian1ORCID,Duernhofer Christian1,Löhle Stefan1,Fasoulas Stefanos1

Affiliation:

1. University of Stuttgart, High Enthalpy Flow Diagnostics Group, Institute of Space Systems, Pfaffenwaldring 29, Stuttgart, 70569, Germany

Abstract

This paper proposes a methodology to scale the stagnation point plasma conditions of an axially symmetric body to a two-dimensional planar body. The method is required to correlate material samples tested under thermochemical loads combined with aeromechanical loads in order to relate the measurements to actual flight scenarios. The equations governing the boundary-layer and heat transfer equations are introduced and analyzed using the commonly known local heat transfer simulation concept. This technique is then adapted to the given constraints and results in a two-step flight-to-ground scaling approach. Flight conditions are first transformed to axisymmetric ground testing equivalents before being scaled to planar bodies. Thereby, the mass-specific enthalpy, total pressure, and Stanton number stay constant; and the velocity gradient doubles when scaling from axisymmetric to planar. Formulations for the velocity gradient are analyzed for both the sub- and supersonic cases. The results are compared between a theoretical approach and plasma wind-tunnel tests. Three heat flux gauges were tested at two conditions. The planar sensors were evaluated with two independent methods, and the results were scaled to a comparable condition. The results compare very well with the theoretically calculated values. The axisymmetric to planar conversion theory detailed in this paper is therefore considered experimentally verified.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3