A Study in the High Temperature Tribological Characteristics of the Plasma Sprayed ZrO2 Coating

Author:

Song Y.S.1,Han J.-C.1,Park M.-H.1,Ro B.-H.2,Lee K.-H.2,Byun E.-S.2,Sasaki S.3

Affiliation:

1. Hankuk Aviation University, Department of Materials Engineering, Kyung-Gi Do, Korea

2. Korea Institute of Machinery and Metals, Korea Chang-Won, Korea

3. Mechanical Engineering Lab., Ibaraki, Japan

Abstract

Abstract The Thermal Barrier Coating (TBC) used to improve the heat barrier and wear resistant property in high temperature of the aircraft engine and the automobile engine, usually has a two layer structure. One is a ceramic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers can be peeled off because of the accumulation of the thermal stress by the difference of the thermal expansion coefficient between metal and ceramics in a heat cyclic environment. In this study, the intermediate layer produced by plasma spray process was introduced to reduce the thermal stress. The powders of plasma spray coating were Yttria Stabilized Zirconia (YSZ), Magnesia Stabilized Zirconia (MSZ) and NiCrAIY. The intermediate layer was sprayed with the powders of partially stabilized zirconia with 50wt% NiCrAIY between the ceramics top coat and the bond coat for the purpose of alleviating heat expansion. The high temperature wear and thermal shock test were conducted. The high temperature wear resistance of the YSZ TBC was better than that of the MSZ TBC. The wear resistance decreased with increasing temperature between 400°C to 600°C. The 3 layers TBC with YSZ top coating showed the best thermal shock resistance. This means that the intermediate layer played an important roll to alleviate the difference of the thermal expansion between metallic layer and ceramics layer. SEM and OM were examined. The bond strength, hardness test, and wear test were also studied.

Publisher

ASM International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3