Abstract
The present work combines the solar energy with the environmental protection through the membrane selectivity for metallic ions. Firstly, we prepared new cationic and anionic polymeric membranes for ions separation. The membranes were prepared using PMMA/L-cysteine noted PM-CYST plasticized by dioctyle phthalate (DOP), or a mixture of cellulose triacetate (CTA), polyethyleneimine (PEI) and DOP. All synthesized membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). In the second part, we prepared two new semiconductors n-Sr2Fe2O5 and p-CuFeO2 and their photo-electrochemical characterizations were undertaken. As application, the transport of Pb2+ using synthesized membranes coupled with the synthetized photoelectrodes was studied. The photo-catalytic results indicate that the combined hetero-system n-Sr2Fe2O5/p-CuFeO2 enhances considerably the electrons transfer. The diffusion flux of Pb2+ increases considerably when the electrode is exposed to visible light. The results show that the diffusion percentages of Pb2+ increase by 68% under solar energy and 79% using a LED lamp.
Publisher
Institutul de Chimie Macromoleculara Petru Poni
Subject
Materials Chemistry,Organic Chemistry