Drilling speed-up and production-increasing development practice of ultra deep clastic reservoir based on Geology-Engineering integration in the Tarim Basin, Northwest China

Author:

Guodong Ji,Changchang Chen,Haige Wang,Hongchun Huang,Qiang Wu,Li Liu

Abstract

Kelasu structural belt in Tarim Basin has a large reservoir burial depth and complex geological conditions, and challenges such as ultra-deep, high temperature, high pressure, and high stress lead to big problems related to well control safety and project quality. To solve these key technical problems that set barriers to the process of exploration and development, a set of drilling technology processes via geology-engineering integration is established with geomechanics as the bridge. And an integrated key drilling engineering technology for the safe speed-up of ultra-deep wells was formed, integrating well location optimization, well trajectory optimization, stratum pressure prediction before drilling, stratum drillability evaluation, and bit and speed-up tool design and optimization. Combined with seismic data, logging data, structural characteristics, and lithology distribution characteristics, the rock mechanics data volume related to the three-dimensional drilling resistance characteristics of the block was established for the first time, and the vertical and horizontal heterogeneity was quantitatively characterized, which provided a basis for bit design, improvement, and optimization. During the process of drilling, the geomechanical model shall be corrected in time according to the actual drilling information, and the drilling “three pressures” data shall be updated in real-time to support the dynamic adjustment of drilling parameters. Through field practice, the average drilling complexity rate was reduced from 18% to 4.6%, and the drilling cycle at 8500 m depth was reduced from 326 days to 257 days, which were significantly better than those of the vertical wells deployed in the early stage without considering geology-engineering integration.

Publisher

Peertechz Publications Private Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3