Abstract
Genetic modification entails incorporating DNA into an organism’s genome as well as putting new DNA into plant cells in order to create a genetically modified plant. Chemicals are poured into plants to improve product sizes and productivity in genetically modified organisms (GMOs), a type of clinical farming. The goal of genetic modification is to provide enhanced features to plants by altering their genetic makeup. This is done by inserting a novel gene or gene into the genome of a plant. Flavr Savr tomatoes were the first genetically modified plants, and they were modified to delay the ripening process, preventing tenderness and rot. Complete crop production increased significantly after the introduction of GM crops at some point during the generation; some of these increases may be due to GM technologies and crop protection advances that have been made possible, despite the fact that GM crops adopted so far are not crop yields. GMOs gain humanity when they are utilized for purposes like improving the availability and quality of food and hospital therapy, as well as contributing to a cleaner environment. If employed correctly, they have the potential to improve the economy without inflicting more harm than good, as well as gain from its ability to alleviate hunger and sickness around the world. However, the full potential of GMOs cannot be identified without thorough research and attention to the dangers associated with each new GMO on a particular scenario basis. Improved resistance to disease and pests can be achieved by genetic modification. It may enable the production of more nutritious staple plants that provide key micronutrients that are frequently lacking in the diets of poor people. As a result, the purpose of this review was to assess the deployment of genetically engineered crops and their effects on modern agriculture progress.
Publisher
Peertechz Publications Private Limited
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献