Metabolomics Identifies and Validates Serum Androstenedione as Novel Biomarker for Diagnosing Primary Angle Closure Glaucoma and Predicting the Visual Field Progression

Author:

Li Shengjie12345,Ren Jun1,Qiu Yichao1,Jiang Zhendong1,Shao Mingxi1,Li Yingzhu1,Wu Jianing1,Song Yunxiao6,Sun Xinghuai2345,Gao Shunxiang2345,Cao Wenjun12345

Affiliation:

1. Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China

2. Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China

3. State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China

4. Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China

5. NHC Key Laboratory of Myopia, Fudan University, Shanghai, China

6. Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China

Abstract

Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia, and no reliable, effective diagnostic, and predictive biomarkers are used in clinical routines. A growing body of evidence shows metabolic alterations in patients with glaucoma. we aimed to develop and validate potential metabolite biomarkers to diagnose and predict the visual field progression of PACG. Here, we used a 5-phases (discovery phase, validation phase 1, validation phase 2, supplementary phase, and cohort phase) multicenter (EENT hospital, Shanghai Xuhui central hospital), cross-sectional, prospective cohort study design to perform widely-targeted metabolomics and chemiluminescence immunoassay to determine candidate biomarkers. Five machine learning (random forest, support vector machine, lasso, K-Nearest neighbor, and Gaussian NB) approaches were used to identify an optimal algorithm. The discrimination ability was evaluated using the area under the receiver operating characteristic curve (AUC). Calibration was assessed by Hosmer-Lemeshow tests and calibration plots. Studied serum samples were collected from 616 participants, and 1464 metabolites were identified. Machine learning algorithm determines that androstenedione exhibited excellent discrimination and acceptable calibration in discriminating PACG across the discovery phase (discovery set 1, areas under the receiver operating characteristic curve [AUC] =1.0 [95%CI, 1.00-1.00]; discovery set, AUC=0.85 [95%CI, 0.80-0.90]) and validation phases (internal validation, AUC=0.86 [95%CI, 0.81-0.91]; external validation, AUC=0.87 [95%CI, 0.80-0.95]). Androstenedione also exhibited a higher AUC (0.92-0.98) to discriminate the severity of PACG. In the supplemental phase, serum androstenedione levels were consistent with those in aqueous humor (r=0.82, P=0.038) and significantly (P=0.021) decreased after treatment. Further, cohort phase demonstrates that higher baseline androstenedione levels (hazard ratio=2.71 [95% CI: 1.199-6.104], P=0.017) were associated with faster visual field progression. Our study identifies serum androstenedione as a potential biomarker for diagnosing PACG and indicating visual field progression.

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3