The αC-β4 loop controls the allosteric cooperativity between nucleotide and substrate in the catalytic subunit of protein kinase A

Author:

Olivieri Cristina1,Wang Yingjie12,Walker Caitlin1,Subrahmanian Manu V.1,Ha Kim N.3,Bernlohr David A.1,Gao Jiali2,Camilloni Carlo4ORCID,Vendruscolo Michele4,Taylor Susan S.56,Veglia Gianluigi12ORCID

Affiliation:

1. Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota

2. Department of Chemistry and Supercomputing Institute, University of Minnesota

3. Departmenf of Chemistry and Biochemistry, St. Catherine University

4. Department of Chemistry, University of Cambridge

5. Department of Pharmacology, University of California at San Diego

6. Department of Chemistry and Biochemistry, University of California at San Diego

Abstract

Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA). Not only this long-range synergistic action is involved in substrate recognition and fidelity, but it is also likely to regulate PKA association with regulatory subunits and other binding partners. To date, a complete understanding of the molecular determinants for this intramolecular mechanism is still lacking.Here, we integrated NMR-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of the catalytic subunit of protein kinase A (PKA-C). We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-β4 loop. To experimentally validate the second excited state, we mutated F100 into alanine (F100A) and used NMR spectroscopy to characterize the structural response of the kinase to ATP and substrate binding. While the catalytic efficiency of PKA-C F100A with a canonical peptide substrate remains unaltered, this mutation rearranges the αC-β4 loop conformation, interrupting the structural coupling of the two lobes and abolishing the allosteric binding cooperativity of the enzyme. The highly conserved αC-β4 loop emerges as a pivotal element able to control the synergistic binding between nucleotide and substrate. These results may explain how mutations or insertions near or within this motif affect the function and drug sensitivity in other homologous kinases.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3