A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster

Author:

Patel Maulik R123,Miriyala Ganesh K1,Littleton Aimee J1,Yang Heiko45,Trinh Kien6,Young Janet M1ORCID,Kennedy Scott R7,Yamashita Yukiko M45,Pallanck Leo J6,Malik Harmit S12ORCID

Affiliation:

1. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States

2. Howard Hughes Medical Institute, Seattle, United States

3. Department of Biological Sciences, Vanderbilt University, Nashville, United States

4. Life Sciences Institute, University of Michigan, Ann Arbor, United States

5. Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States

6. Genome Sciences, University of Washington, Seattle, United States

7. Pathology, University of Washington Medical Center, Seattle, United States

Abstract

Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this ‘Mother’s Curse’, their effect on females has been largely unexplored. Here, we identify COIIG177S, a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COIIG177S represents one of the clearest examples of a ‘male-harming’ mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COIIG177S might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COIIG177S -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations.

Funder

Helen Hay Whitney Foundation

National Institutes of Health

Howard Hughes Medical Institute

National Institute of General Medical Sciences

G Harold and Leila Y. Mathers Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3