Affiliation:
1. Department of Psychology, New York University
2. Center for Neural Science, New York University
Abstract
Pioneering studies demonstrating that the contents of visual working memory (WM) can be decoded from the patterns of multivoxel activity in early visual cortex transformed not only how we study WM, but theories of how memories are stored. For instance, the ability to decode the orientation of memorized gratings is hypothesized to depend on the recruitment of the same neural encoding machinery used for perceiving orientations. However, decoding evidence cannot be used to test the so-called
sensory recruitment hypothesis
without understanding the underlying nature of what is being decoded. Although unknown during WM, during perception decoding the orientation of gratings does not simply depend on activities of orientation tuned neurons. Rather, it depends on complex interactions between the orientation of the grating, the aperture edges, and the topographic structure of the visual map. Here, our goals are to 1) test how these aperture biases described during perception may affect WM decoding, and 2) leverage carefully manipulated visual stimulus properties of gratings to test how sensory-like are WM codes. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases despite having identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Results indicated that fMRI patterns of delay period activity while maintaining the orientation of a grating with one modulator (eg, radial) were interchangeable with patterns while maintaining a grating with the other modulator (eg, angular). We found significant cross-classification in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using a population receptive field model of the visual field maps. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.
Publisher
eLife Sciences Publications, Ltd