Structural assembly of the bacterial essential interactome
Author:
Gomez Borrego Jordi1,
Torrent Marc1ORCID
Affiliation:
1. Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona
Abstract
The study of protein interactions in living organisms is fundamental for understanding biological processes and central metabolic pathways. Yet, our knowledge of the bacterial interactome remains limited. Here, we combined gene deletion mutant analysis with deep learning protein folding using Alphafold2 to predict the core bacterial essential interactome. We predicted and modeled 1402 interactions between essential proteins in bacteria and generated 146 high-accuracy models. Our analysis reveals previously unknown details about the assembly mechanisms of these complexes, highlighting the importance of specific structural features in their stability and function. Our work provides a framework for predicting the essential interactomes of bacteria and highlight the potential of deep learning algorithms in advancing our understanding of the complex biology of living organisms. Also, the results presented here offer a promising approach to identify novel antibiotic targets.
Funder
Ministerio de Ciencia e Innovación
European Society of Clinical Microbiology and Infectious Diseases
Publisher
eLife Sciences Publications, Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献