Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data

Author:

Hall Michael B1ORCID,Wick Ryan R12ORCID,Judd Louise M12ORCID,Nguyen An NT1ORCID,Steinig Eike J1ORCID,Xie Ouli34ORCID,Davies Mark R1ORCID,Seemann Torsten12ORCID,Stinear Timothy P12ORCID,Coin Lachlan JM1ORCID

Affiliation:

1. Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity

2. Centre for Pathogen Genomics, The University of Melbourne

3. Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity

4. Monash Infectious Diseases, Monash Health

Abstract

Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance prediction. This study presents a comprehensive benchmarking of SNP and indel variant calling accuracy across 14 diverse bacterial species using Oxford Nanopore Technologies (ONT) and Illumina sequencing. We generate gold standard reference genomes and project variations from closely-related strains onto them, creating biologically realistic distributions of SNPs and indels.Our results demonstrate that ONT variant calls from deep learning-based tools delivered higher SNP and indel accuracy than traditional methods and Illumina, with Clair3 providing the most accurate results overall. We investigate the causes of missed and false calls, highlighting the limitations inherent in short reads and discover that ONT’s traditional limitations with homopolymer-induced indel errors are absent with high-accuracy basecalling models and deep learning-based variant calls. Furthermore, our findings on the impact of read depth on variant calling offer valuable insights for sequencing projects with limited resources, showing that 10x depth is sufficient to achieve variant calls that match or exceed Illumina.In conclusion, our research highlights the superior accuracy of deep learning tools in SNP and indel detection with ONT sequencing, challenging the primacy of short-read sequencing. The reduction of systematic errors and the ability to attain high accuracy at lower read depths enhance the viability of ONT for widespread use in clinical and public health bacterial genomics.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3