A new look at the architecture and dynamics of the Hydra nerve net

Author:

Keramidioti Athina1,Schneid Sandra1,Busse Christina1,von Laue Christoph Cramer2,Bertulat Bianca2,Salvenmoser Willi3,Heß Martin1,Alexandrova Olga1,Glauber Kristine M.4,Steele Robert E.4ORCID,Hobmayer Bert3ORCID,Holstein Thomas2ORCID,David Charles N.1ORCID

Affiliation:

1. Department of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany

2. Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany

3. Department of Zoology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria

4. Department of Biological Chemistry, University of California, Irvine, CA 92617, USA

Abstract

The Hydra nervous system is the paradigm of a “simple nerve net”. Nerve cells in Hydra , as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra . Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM and serial block face SEM show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

Publisher

eLife Sciences Publications, Ltd

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3