From sequence to molecules: Feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways

Author:

Gu Shaohua12ORCID,Shao Yuanzhe2,Rehm Karoline3ORCID,Bigler Laurent3ORCID,Zhang Di1ORCID,He Ruolin1ORCID,Xu Ruichen4,Shao Jiqi1ORCID,Jousset Alexandre5ORCID,Friman Ville-Petri6ORCID,Bian Xiaoying7,Wei Zhong5ORCID,Kümmerli Rolf8ORCID,Li Zhiyuan12ORCID

Affiliation:

1. Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University

2. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University

3. University of Zurich, Department of Chemistry

4. School of Life Science, Shandong University

5. Jiangsu Provincial Key Lab for Organic Solid Waste Utilization

6. University of Helsinki, Department of Microbiology

7. Helmholtz International Lab for Anti-infectives, State Key Laboratory of Microbial Technology, Shandong University

8. University of Zurich, Department of Quantitative Biomedicine

Abstract

Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3