Associative plasticity of granule cell inputs to cerebellar Purkinje cells

Author:

Conti Rossella1,Auger Céline1

Affiliation:

1. Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences

Abstract

Granule cells of the cerebellum make up to 175 000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similarly to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.

Publisher

eLife Sciences Publications, Ltd

Reference61 articles.

1. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice;Aiba;Cell,1994

2. A theory of cerebellar function;Albus;Mathematical Biosciences,1971

3. An excitatory GABA loop operating in vivo;Astorga;Frontiers in Cellular Neuroscience,2015

4. Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers;Berglund;The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,2016

5. Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule;Bidoret;Proceedings of the National Academy of Sciences of the United States of America,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3