Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts

Author:

Küken Anika12ORCID,Sommer Frederik1,Yaneva-Roder Liliya1,Mackinder Luke CM3ORCID,Höhne Melanie1,Geimer Stefan4,Jonikas Martin C3,Schroda Michael1,Stitt Mark1,Nikoloski Zoran12ORCID,Mettler-Altmann Tabea156ORCID

Affiliation:

1. Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany

2. Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

3. Department of Plant Biology, Carnegie Institution for Science, Stanford, United States

4. Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany

5. Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany

6. Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany

Abstract

Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Max-Planck-Gesellschaft

National Science Foundation

National Institutes of Health

Simons Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3