Ultra-low coverage fragmentomic model of cell-free DNA for cancer detection based on whole-exome regions

Author:

Sangphukieo Apiwat1ORCID,Noisagul Pitiporn1,Thongkumkoon Patcharawadee1,Chaiyawat Parunya1ORCID

Affiliation:

1. Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University

Abstract

Cell-free DNA (cfDNA) has shown promise as a non-invasive biomarker for cancer screening and monitoring. The current advanced machine learning (ML) model, known as DNA evaluation of fragments for early interception (DELFI), utilizes the short and long fragmentation pattern of cfDNA and has demonstrated exceptional performance. However, the application of cfDNA-based model can be limited by the high cost of whole-genome sequencing (WGS). In this study, we present a novel ML model for cancer detection that utilizes cfDNA profiles generated from all protein-coding genes in the genome (exome) with only 0.08X of WGS coverage. Our model was trained on a dataset of 721 cfDNA profiles, comprising 426 cancer patients and 295 healthy individuals. Performance evaluation using a ten-fold cross-validation approach demonstrated that the new ML model using whole-exome regions, called xDELFI, can achieve high accuracy in cancer detection (Area under the ROC curve; AUC=0.896, 95%CI = 0.878 - 0.916), comparable to the model using WGS (AUC=0.920, 95%CI = 0.901 – 0.936). Notably, we observed distinct fragmentation patterns between exonic regions and the whole-genome, suggesting unique genomic features within exonic regions. Furthermore, we demonstrate the potential benefits of combining mutation detection in cfDNA with xDELFI, which enhance the model sensitivity. Our proof-of-principle study indicates that the fragmentomic ML model based solely on whole-exome regions retains its predictive capability. With the ultra-low sequencing coverage of the new model, it could potentially improve the accessibility of cfDNA-based cancer diagnosis and aid in early detection and treatment of cancer.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3