Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies

Author:

Díaz-Pascual Francisco1ORCID,Lempp Martin1,Nosho Kazuki1ORCID,Jeckel Hannah123ORCID,Jo Jeanyoung K4ORCID,Neuhaus Konstantin123ORCID,Hartmann Raimo1ORCID,Jelli Eric12ORCID,Hansen Mads Frederik1ORCID,Price-Whelan Alexa4ORCID,Dietrich Lars EP4ORCID,Link Hannes15,Drescher Knut123ORCID

Affiliation:

1. Max Planck Institute for Terrestrial Microbiology

2. Department of Physics, Philipps-Universität Marburg

3. Biozentrum, University of Basel

4. Department of Biological Sciences, Columbia University

5. Interfaculty Institute for Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen

Abstract

Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like Escherichia coli colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during E. coli colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine via the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, via the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Heineman Foundation

Bundesministerium für Bildung und Forschung

Max-Planck-Gesellschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

National Institute of Allergy and Infectious Diseases

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3