Predictive learning rules generate a cortical-like replay of probabilistic sensory experiences

Author:

Asabuki Toshitake123ORCID,Fukai Tomoki1ORCID

Affiliation:

1. Okinawa Institute of Science and Technology Graduate University

2. RIKEN Center for Brain Science, RIKEN ECL Research Unit

3. RIKEN Cluster for Pioneering Research

Abstract

The brain is thought to construct an optimal internal model representing the probabilistic structure of the environment accurately. Evidence suggests that spontaneous brain activity gives such a model by cycling through activity patterns evoked by previous sensory experiences with the experienced probabilities. The brain’s spontaneous activity emerges from internally-driven neural population dynamics. However, how cortical neural networks encode internal models into spontaneous activity is poorly understood. Recent computational and experimental studies suggest that a cortical neuron can implement complex computations, including predictive responses, through soma-dendrite interactions. Here, we show that a recurrent network of spiking neurons subject to the same predictive learning principle provides a novel mechanism to learn the spontaneous replay of probabilistic sensory experiences. In this network, the learning rules minimize probability mismatches between stimulus-evoked and internally driven activities in all excitatory and inhibitory neurons. This learning paradigm generates stimulus-specific cell assemblies that internally remember their activation probabilities using within-assembly recurrent connections. The plasticity of cells’ intrinsic excitabilities normalizes neurons’ dynamic ranges to further improve the accuracy of probability coding. Our model contrasts previous models that encode the statistical structure of sensory experiences into Markovian transition patterns among cell assemblies. We demonstrate that the spontaneous activity of our model well replicates the behavioral biases of monkeys performing perceptual decision making. Our results suggest that interactions between intracellular processes and recurrent network dynamics are more crucial for learning cognitive behaviors than previously thought.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3