Loss of circadian protection against influenza infection in adult mice exposed to hyperoxia as neonates

Author:

Issah Yasmine1,Naik Amruta1,Tang Soon Y2,Forrest Kaitlyn1,Brooks Thomas G2,Lahens Nicholas2ORCID,Theken Katherine N23ORCID,Mermigos Mara1,Sehgal Amita45,Worthen George S16,FitzGerald Garret A234,Sengupta Shaon1246ORCID

Affiliation:

1. The Children’s Hospital of Philadelphia, Philadelphia, United States

2. Institute of Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania, Philadelphia, United States

3. Systems Pharmacology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States

4. Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, United States

5. Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States

6. Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States

Abstract

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.

Funder

National Heart, Lung, and Blood Institute

National Institute of Child Health and Human Development

National Center for Research Resources

Howard Hughes Medical Institute

National Center for Advancing Translational Sciences

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3