Pial collaterals develop through mosaic colonization of capillaries by arterial and microvascular endothelial cells

Author:

Perovic Tijana12ORCID,Hollfinger Irene1ORCID,Mayer Stefanie345ORCID,Lips Janet3ORCID,Dopatka Monika3ORCID,Harms Christoph2345ORCID,Gerhardt Holger1256ORCID

Affiliation:

1. Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)

2. DZHK (German Center for Cardiovascular Research)

3. Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health

4. Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin

5. Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin

6. Berlin Institute of Health (BIH)

Abstract

Collaterals are unique blood vessels present in many healthy tissues that cross-connect distal-end arterioles of adjacent arterial trees, thus providing alternate routes of perfusion. Stroke patients with superior pial collateral flow respond better to treatments and present with an overall improved prognostic outcome. However, how pial collaterals develop in the embryo and how they reactivate upon stroke remains unclear. Here, using lineage tracing in combination with three-dimensional imaging, we demonstrate that mouse embryos employ a novel mechanism to build pial collaterals, distinct from their outward remodeling following stroke. Endothelial cells (ECs) of arterial and microvascular origin invade already existing pre-collateral vascular structures in a process which we termed mosaic colonization. Arterialization of these pre-collateral vascular segments happens concurrently with mosaic colonization. Despite having a smaller proliferative capacity, embryonic arterial cells represent the majority of cells that migrate to form nascent collaterals; embryonic microvascular cells, despite their higher proliferative potential, form only about a quarter of collateral endothelial cells. Moreover, postnatal collateral growth relies much more on self-replenishment of arterial cells than on microvascular contribution. Following ischemic injury, pial collateral outward remodeling relies on local cell proliferation rather than recruitment of non-arterial cells. Together, these findings establish distinct cellular mechanisms underlying pial collateral development and ischemic remodeling, raising the prospect for future research to identify novel, collateral-specific therapeutic strategies for ischemic stroke.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3