Ciliary length regulation by intraflagellar transport in zebrafish

Author:

Sun Yi1ORCID,Chen Zhe12ORCID,Jin Minjun13,Xie Haibo13,Zhao Chengtian134ORCID

Affiliation:

1. Key Laboratory of Evolution and Marine Biodiversity (MOE) and Institute of Evolution and Marine Biodiversity, Ocean University of China

2. Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University

3. Fang Zongxi Center for Marine Evo Devo, College of Marine Life Sciences, Ocean University of China

4. Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology

Abstract

How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogeneis. We observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. The increased IFT speed in longer cilia was not due to changes in common factors that regulate IFT, such as motor selection, BBS proteins, or tubulin modification. Instead, longer cilia can organize larger IFT particles for faster transportation. Reducing the size of IFT particles can slow down IFT speed, resulting in shorter cilia. Our study presents an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3