Affiliation:
1. Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology
Abstract
Daptomycin is a potent lipopeptide antibiotic used in the treatment of live-threatening Gram-positive infections, but the molecular mechanism of its interaction with bacterial membrane remains unclear. Here we show that this interaction is divided into two stages, of which the first is a fast and reversible binding of the drug to phospholipid membrane in milliseconds and the second is a slow and irreversible insertion into membrane in minutes, only in the presence of the bacteria-specific lipid phosphatidylglycerol, to a saturating point where the ratio of the drug to phosphatidylglycerol is 1:2. Fluorescence-based titration showed that the antibiotic simultaneously binds two molecules of phosphatidylglycerol with a nanomolar binding affinity in the presence of calcium ion. The resulting stable complex is easily formed in a test tube and readily isolated from the membrane of drug-treated bacterial cells, strongly supporting a unique drug uptake mechanism in which daptomycin forms a stable multi-component complex with calcium and phosphatidylglycerol. Revelation of this novel uptake mechanism provides fresh insights into the mode of action of daptomycin and paves the way to new strategies to attenuate resistance to the drug.
Publisher
eLife Sciences Publications, Ltd