Phenotype inference in an Escherichia coli strain panel

Author:

Galardini Marco1ORCID,Koumoutsi Alexandra2ORCID,Herrera-Dominguez Lucia2,Cordero Varela Juan Antonio1ORCID,Telzerow Anja2,Wagih Omar1,Wartel Morgane2,Clermont Olivier34,Denamur Erick345,Typas Athanasios2,Beltrao Pedro1ORCID

Affiliation:

1. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom

2. Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

3. INSERM, IAME, UMR1137, Paris, France

4. Université Paris Diderot, Paris, France

5. APHP, Hôpitaux Universitaires Paris Nord Val-de-Seine, Paris, France

Abstract

Understanding how genetic variation contributes to phenotypic differences is a fundamental question in biology. Combining high-throughput gene function assays with mechanistic models of the impact of genetic variants is a promising alternative to genome-wide association studies. Here we have assembled a large panel of 696 Escherichia coli strains, which we have genotyped and measured their phenotypic profile across 214 growth conditions. We integrated variant effect predictors to derive gene-level probabilities of loss of function for every gene across all strains. Finally, we combined these probabilities with information on conditional gene essentiality in the reference K-12 strain to compute the growth defects of each strain. Not only could we reliably predict these defects in up to 38% of tested conditions, but we could also directly identify the causal variants that were validated through complementation assays. Our work demonstrates the power of forward predictive models and the possibility of precision genetic interventions.

Funder

Alexander von Humboldt-Stiftung

Fondation pour la Recherche Médicale

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3