Development of Communication Channel for data Transmission Over Single-Mode Optical Fiber in Environmental Monitoring System from Remote Multifunctional Complexes
Author:
Affiliation:
1. The Bonch-Bruevich Saint Petersburg State University of Telecommunications,Saint Petersburg,Russia
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9950734/9950738/09950821.pdf?arnumber=9950821
Reference25 articles.
1. Method of assessment the degree of reliability of the pulse wave image in the rapid diagnosis of the human condition;grevtseva;Journal of Physics Conference Series,2018
2. On the possibility of recording absorption spectra in weak magnetic fields by the method of nuclear magnetic resonance;myazin;Journal of Physics Conference Series,2018
3. A New Method to Study the Structure of NMR Signals Detected with the Aid of Modulation Procedure
4. Peculiarities of Registration of the Nuclear Magnetic Resonance Spectrum of a Condensed Medium During Express Control of Its State
5. On the Possibility of Express Recording of Nuclear Magnetic Resonance Spectra of Liquid Media in Weak Fields
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Overview of Fiber Optic Communications in Railway Transport: Challenges and Impact of Processing Time;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29
2. A New Method of Express Control of Early-Stage Kidney Damage;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29
3. Development of OFDM Optical Signal Transceiver Based on AWGR;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29
4. Development to New Methodology for Determining Calibration Factors in Escco Technology;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29
5. Creation of an Automated System for Adjusting the Position of the Laser Radiation Axis for the Air Communication Channel;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3