Low Complexity Classification Approach for Faster-Than-Nyquist (FTN) Signaling Detection
Author:
Affiliation:
1. Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada
Funder
Natural Science and Engineering Research Council of Canada (NSERC) through its Discovery program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation
Link
http://xplorestaging.ieee.org/ielx7/4234/10064471/10017273.pdf?arnumber=10017273
Reference10 articles.
1. A Novel Sum-Product Detection Algorithm for Faster-Than-Nyquist Signaling: A Deep Learning Approach
2. Deep Learning-based List Sphere Decoding for Faster-than-Nyquist (FTN) Signaling Detection
3. Coded Modulation Systems
4. A Novel Low Complexity Faster-than-Nyquist (FTN) Signaling Detector for Ultra High-Order QAM
5. Reduced-Complexity Equalization for Faster-Than-Nyquist Signaling: New Methods Based on Ungerboeck Observation Model
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Energy Efficiency for Faster-than-Nyquist Data Transmission Using Processing Algorithms with Decision Feedback;Symmetry;2024-08-06
2. Low Complexity Lookup Table Aided Soft Output Semidefinite Relaxation Based Faster-than-Nyquist Signaling Detector;ICC 2024 - IEEE International Conference on Communications;2024-06-09
3. Research on multi-granularity imbalanced knowledge condition monitoring for mechanical equipment based on hierarchical ELM in multi-entropy space;Expert Systems with Applications;2024-03
4. Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model;Heliyon;2023-11
5. Application of Simple Detection Algorithm with Decision Feedback and Optimization of Observation Interval at Transmission Rates Above the Nyquist Barrier;2023 International Conference on Electrical Engineering and Photonics (EExPolytech);2023-10-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3