Heart Disease Prediction Using Adaptive Infinite Feature Selection and Deep Neural Networks

Author:

Modak Sudipta1,Abdel-Raheem Esam1,Rueda Luis1

Affiliation:

1. University of Windsor,School of Computer Science,Department of Electrical and Computer Engineering,Windsor,Canada,N9B 3P4

Publisher

IEEE

Reference18 articles.

1. Heart Disease Classification Using Neural Network and Feature Selection

2. Hybrid intelligent modeling schemes for heart disease classification

3. An optimized feature selection based on genetic approach and support vector machine for heart disease

4. Identification of significant features and data mining techniques in predicting heart disease

5. Svm based decision support system for heart disease classification with integer-coded genetic algorithm to select critical features;bhatia;Proceedings of the World Congress on Engineering and Computer Science,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Community Detection to Improve Machine Learning Based Heart Disease Prediction;2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP);2024-02-21

2. A deep learning framework optimised by Harris Hawks algorithm for intelligent ECG classification in WSN-IoT environment;Journal of Intelligent & Fuzzy Systems;2023-11-04

3. Boruta Feature Selection Method for Optimizing a Case-Based Reasoning Model to Predict Heart Disease;International Journal of Pattern Recognition and Artificial Intelligence;2023-11

4. Improving Machine Learning Classification of Heart Disease Using the Graph-Based Techniques;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

5. An intelligent heart disease prediction system using hybrid deep dense Aquila network;Biomedical Signal Processing and Control;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3