Integrating Explicit Contexts with Recurrent Neural Networks for Improving Prognostic Models
Author:
Affiliation:
1. Universidad Carlos III de Madrid Avda. de la Universidad,Telematics Engineering Department,Madrid,Spain,28911
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10115529/10115530/10115751.pdf?arnumber=10115751
Reference27 articles.
1. Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory
2. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
3. A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
4. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
5. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explicit Context Integrated Recurrent Neural Network for applications in smart environments;Expert Systems with Applications;2024-12
2. A brief Review on the Role of Context in Explainable AI;2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS);2024-05-23
3. Exploiting Context for Fault Detection in Solar Photovoltaic System using Context-Sensitive Recurrent Neural Network;2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE);2023-12-17
4. Exploiting Context and Attention Using Recurrent Neural Network for Sensor Time Series Prediction;Advanced Analytics and Learning on Temporal Data;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3