Learning Automated Driving in Complex Intersection Scenarios Based on Camera Sensors: A Deep Reinforcement Learning Approach
Author:
Affiliation:
1. College of Mechatronics and Control Engineering, Institute of Human Factors and Ergonomics, Shenzhen University, Shenzhen, Guangdong, China
2. Department of Civil Engineering, Tsinghua University, Beijing, China
Funder
National Natural Science Foundation of China
Shenzhen Fundamental Research and Discipline Layout project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/9722574/09694607.pdf?arnumber=9694607
Reference47 articles.
1. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
2. Gate-variants of Gated Recurrent Unit (GRU) neural networks
3. Bidirectional LSTM-CRF models for sequence tagging;huang;arXiv 1508 01991,2015
4. A Novel Multi-Agent DDQN-AD Method-Based Distributed Strategy for Automatic Generation Control of Integrated Energy Systems
5. Human learning in Atari;tsividis;Proc AAAI Assoc Spring Symp Sci Intell Comput Principles Natural Artif Intell,2017
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Cooperative Control Methodology Considering Dynamic Interaction for Multiple Connected and Automated Vehicles in the Merging Zone;IEEE Transactions on Intelligent Transportation Systems;2024-09
2. A Traffic Sign Classification Method Using LiDAR Corrected Intensity and Geometric Feature;IEEE Sensors Journal;2024-04-01
3. A Review of Decision-Making and Planning for Autonomous Vehicles in Intersection Environments;World Electric Vehicle Journal;2024-03-06
4. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience;Mathematical Biosciences and Engineering;2024
5. Reinforcement Learning-Based Intelligent Traffic Signal Control Considering Sensing Information of Railway;IEEE Sensors Journal;2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3