Self-Supervised Deep Learning to Reconstruct Seismic Data With Consecutively Missing Traces
Author:
Affiliation:
1. State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai, China
2. ByteDance Inc., Shanghai, China
3. AI Laboratory, SAIC Motor Corporation Ltd., Shanghai, China
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Strategic Priority Research Program of the Chinese Academy of Science
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09703292.pdf?arnumber=9703292
Reference64 articles.
1. Seismic data interpolation using deep learning with generative adversarial networks
2. Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder
3. Streaming prediction-error filters
4. Accurate data reconstruction through simultaneous application of statistical and physics-based constraints to multiple geophysical data sets
5. Seismic trace interpolation in the f‐x‐y domain
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-Supervised Learning of Physics-Guided Deep Unfolding Parallel Networks for Solving Nonlinear Inverse Scattering Problems;IEEE Transactions on Microwave Theory and Techniques;2024-09
2. Self-supervised learning for efficient seismic facies classification;GEOPHYSICS;2024-09-01
3. Seismic data denoising with two-step prediction strategy based on Neural Network;Computers & Geosciences;2024-05
4. Modeling multisource multifrequency acoustic wavefields by a multiscale Fourier feature physics-informed neural network with adaptive activation functions;GEOPHYSICS;2024-01-09
5. Deep Learning-Based Data-Driven P-/S-Wave Vector Decomposition for Multicomponent Seismic Data;IEEE Transactions on Geoscience and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3