Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing
Author:
Affiliation:
1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
LIESMARS Special Research Funding
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/10006360/10016626.pdf?arnumber=10016626
Reference38 articles.
1. Saliency-Based Endmember Detection for Hyperspectral Imagery
2. Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization
3. Automatic spectral target recognition in hyperspectral imagery
4. Autonomous Endmember Detection via an Abundance Anomaly Guided Saliency Prior for Hyperspectral Imagery
5. CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SPTrack: Spectral Similarity Prompt Learning for Hyperspectral Object Tracking;Remote Sensing;2024-08-14
2. Assessing the Accuracy of Time Series Algorithms for Extraction of Quantitative Data from Hyper Spectral Imagery;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29
3. SSF-Net: A Spatial–Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
4. DAAN: A Deep Autoencoder-Based Augmented Network for Blind Multilinear Hyperspectral Unmixing;IEEE Transactions on Geoscience and Remote Sensing;2024
5. Deep Spatial Feedback Refined Network With Multilevel Feature Fusion for Hyperspectral Image Subpixel Mapping;IEEE Transactions on Geoscience and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3