Joint Self-Training and Rebalanced Consistency Learning for Semi-Supervised Change Detection

Author:

Zhang Xueting1,Huang Xin1ORCID,Li Jiayi2ORCID

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

2. School of Remote Sensing and Information Engineering and the Luojia Laboratory, Wuhan University, Wuhan, China

Funder

National Natural Science Foundation of China

Special Fund of Hubei Luojia Laboratory

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Earth and Planetary Sciences,Electrical and Electronic Engineering

Reference66 articles.

1. Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images

2. Faster R-CNN: Towards real-time object detection with region proposal networks;ren;Proc Adv Neural Inf Process Syst,2015

3. SemiSANet: A Semi-Supervised High-Resolution Remote Sensing Image Change Detection Model Using Siamese Networks with Graph Attention

4. FSANet: Feature-and-Spatial-Aligned Network for Tiny Object Detection in Remote Sensing Images

5. General E(2)-equivariant steerable CNNs;weiler;Proc Adv Neural Inf Process Syst,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentangling Semi-Supervised Semantic Segmentation of Remote Sensing Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Enhancing Inter-Class Discrimination for Domain Adaptation of Change Detection;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Decouple and weight semi-supervised semantic segmentation of remote sensing images;ISPRS Journal of Photogrammetry and Remote Sensing;2024-06

4. Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms;Remote Sensing;2024-02-25

5. STCRNet: A Semi-Supervised Network Based on Self-Training and Consistency Regularization for Change Detection in VHR Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3