FCNet: Deep Learning Architecture for Classification of Fatigue and Corrosion Acoustic Emission Signal
Author:
Affiliation:
1. IIT,Department of Electrical Engineering,Hyderabad,Telangana,India
2. University of Hyderabad,School of Engineering Science and Technology,Telangana,India
Funder
Naval Research Board
Research and Development
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9841660/9841947/09842070.pdf?arnumber=9842070
Reference19 articles.
1. Pitting and uniform corrosion source recognition using acoustic emission parameters
2. Investigations of the fatigue damage in 16Mn steels by wavelet-based acoustic emission technique;li;Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing),2012
3. Production of DMR 249A Steel at SAIL, Bokaro Steel Plant
4. ASTM G61: standard test method for conducting cyclic potentiodynamic polarization measurements for localised corrosion susceptibility of iron, nickel, cobalt-based alloys,0
5. ASTM E647: standard test method for measurement of fatigue crack growth rates,0
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phase Space Reconstruction based Methodology of Real Time Detection of Corrosion in Ship Steel using AE Sensors;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03
2. Hybrid Deep Neural Network with CNN and RNN alongside 1st order B-spline Differential-Based Methodology for Real Time Fatigue Crack Growth Rate Monitoring Using Only AE Sensors;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03
3. Customized Recurrent Neural Network Based Accurate Co-Planar Source Localization Methodology with Reduced Number of AE Sensors;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03
4. Phase Space Reconstruction Based Methodology For Real Time Impact Assessment of Corrosion On Structural Health of Ship Material Using In-situ Acoustic Emission Sensors;2023 21st IEEE Interregional NEWCAS Conference (NEWCAS);2023-06-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3