Identification of Skin Diseases using a Novel Deep CNN
Author:
Affiliation:
1. Kalasalingam Academy of Research and Education,Department of Computer Science and Engineering
2. Kalasalingam Academy of Research and Education,Department of Electronics and Communication Engineering
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9885261/9885247/09885330.pdf?arnumber=9885330
Reference53 articles.
1. Fake Image Detection in Twitter using Flood Fill Algorithm and Deep Neural Networks
2. A Systematic Parking System Using bi-class Machine Learning Techniques;sunethra;2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS),2022
3. IOT Based Autonomous Inventory Management for Warehouses
4. A compendious study on security challenges in big data and approaches of feature selection;muneeswaran;International Journal of Control and Automation,2020
5. Competent Ultra Data Compression By Enhanced Features Excerption Using Deep Learning Techniques
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Skin Lesion Analysis: Leveraging UNet and VGG Architectures in Deep Learning Models;2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S);2024-06-08
2. A Deep Learning Approach for Classification of Vitiligo and Scar Images;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12
3. Enhancing Protein Structure Generation Through Deep Learning Techniques;2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS);2024-03-14
4. Identifying Multiple Diseases in the Human Body using Machine Learning;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06
5. Student Engagement Detection in Classroom using Deep CNN-based Learning Approach;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3