Dynamic Incipient Fault Forecasting for Power Transformers Using an LSTM Model
Author:
Affiliation:
1. School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K.
Funder
Engineering and Physical Sciences Research Council, and the data used in this study was provided by General Electric
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/94/10142149/10061284.pdf?arnumber=10061284
Reference31 articles.
1. Transformer failure diagnosis using fuzzy association rule mining combined with case‐based reasoning
2. A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis
3. Power Transformer Fault Classification Based on Dissolved Gas Analysis by Implementing Bootstrap and Genetic Programming
4. A Fault Diagnosis Model of Power Transformers Based on Dissolved Gas Analysis Features Selection and Improved Krill Herd Algorithm Optimized Support Vector Machine
5. Artificial intelligence model for transformer fault diagnosis using a constructed database
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault diagnosis method for oil-immersed transformers integrated digital twin model;Scientific Reports;2024-09-02
2. Hybrid Algorithm for Dynamic Fault Prediction of HVDC Converter Transformer Using DGA Data;IEEE Transactions on Dielectrics and Electrical Insulation;2024-08
3. Transformer partial discharge fault diagnosis based on improved adaptive local iterative filtering‐bidirectional long short‐term memory;IET Electric Power Applications;2024-07-15
4. Application of back propagation neural network in complex diagnostics and forecasting loss of life of cellulose paper insulation in oil-immersed transformers;Scientific Reports;2024-03-13
5. A Data-Driven Digital Twin Architecture for Failure Prediction of Customized Automatic Transverse Robot;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3