Traffic Sign Classification for Autonomous Vehicles Using Split and Federated Learning Underlying 5G

Author:

Padaria Ali Asgar1ORCID,Mehta Aryan Alpesh1ORCID,Jadav Nilesh Kumar1ORCID,Tanwar Sudeep1ORCID,Garg Deepak2ORCID,Singh Anupam3ORCID,Pau Giovanni4ORCID,Sharma Gulshan5ORCID

Affiliation:

1. Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India

2. School of Computer Science and Artificial Intelligence, SR University, Warangal, India

3. Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun, India

4. Faculty of Engineering and Architecture, Kore University of Enna, Enna, Italy

5. Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg, South Africa

Funder

Kore University of Enna, Italy

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Automotive Engineering

Reference24 articles.

1. SAGE: A S plit- A rchitecture Methodolo g y for E fficient End-to-End Autonomous Vehicle Control

2. Very deep convolutional networks for large-scale image recognition;simonyan;Proc 3rd Int Conf Learn Representations,0

3. GeFL: Gradient Encryption-Aided Privacy Preserved Federated Learning for Autonomous Vehicles

4. Semi-supervised Learning in Distributed Split Learning Architecture and IoT Applications

5. The future of industrial-grade edge AI, NVIDIA jetson AGX orin industrial module,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SFML: A personalized, efficient, and privacy-preserving collaborative traffic classification architecture based on split learning and mutual learning;Future Generation Computer Systems;2025-01

2. Fuzzy and Spiking Neural Network-based Secure Data Exchange Framework for Autonomous Vehicle;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. Enhanced Pothole Detection Using YOLOv5 and Federated Learning;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3