AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images
Author:
Affiliation:
1. College of Artificial Intelligence, Nankai University, Tianjin, China
2. Institute of Biomedical Engineering, University of Oxford, London, U.K
3. Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, U.K
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Radiological and Ultrasound Technology,Software
Link
http://xplorestaging.ieee.org/ielx7/42/10114431/09968268.pdf?arnumber=9968268
Reference44 articles.
1. Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound
2. CBAM: Convolutional Block Attention Module
3. Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains
4. An RDAU-NET model for lesion segmentation in breast ultrasound images
5. Convolutional neural networks for breast cancer detection in mammography: A survey
Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Harmonious parameters and performance: Lightweight convolutional stage and local feature weighted fusion MLP for medical image segmentation;Biomedical Signal Processing and Control;2024-12
2. Interlayer information fusion-based and dual-attention improved U-Net for ABVS image sequence intelligent tumor segmentation;Biomedical Signal Processing and Control;2024-12
3. KRC-APM: Key region cutting and artificial prior model for breast cancer recognition in ultrasound images;Expert Systems with Applications;2024-12
4. Multi-scale morphology-aided deep medical image segmentation;Engineering Applications of Artificial Intelligence;2024-11
5. US-Net: U-shaped network with Convolutional Attention Mechanism for ultrasound medical images;Computers & Graphics;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3