A Weakly Supervised Transfer Learning Approach for Radar Sounder Data Segmentation

Author:

García Miguel Hoyo1ORCID,Donini Elena1ORCID,Bovolo Francesca1ORCID

Affiliation:

1. Center for Digital Society, Fondazione Bruno Kessler, Trento, Italy

Funder

Italian Space Agency through the Attività Scientifiche per JUICE fase C-D through Contract Agenzia Spaziale Italian—Istituto Nazionale di Astrofisica

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Earth and Planetary Sciences,Electrical and Electronic Engineering

Reference37 articles.

1. U-Net: Convolutional networks for biomedical image segmentation;ronneberger;Proc Int Conf Med Image Comput Comput -Assist Intervent,2015

2. MobileNets: Efficient convolutional neural networks for mobile vision applications;howard;arXiv 1704 04861,2017

3. W-Net: A deep model for fully unsupervised image segmentation;xia;arXiv 1711 08506,2017

4. ImageNet Large Scale Visual Recognition Challenge

5. A Survey on Transfer Learning

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Learning for the Unsupervised Segmentation of Radar Sounder Data Acquired on the Cryosphere;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Radargrams as Sequences: A Method for The Semantic Segmentation of Radar Sounder Data;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Super-Resolution of Radargrams With a Generative Deep Learning Model;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Adjacent-Atrous Mechanism for Expanding Global Receptive Fields: An End-to-End Network for Multiattribute Scene Analysis in Remote Sensing Imagery;IEEE Transactions on Geoscience and Remote Sensing;2024

5. The Text Classification Active Learning Using Transfer Learning Methods;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3