Learning-Based Adaptive Sliding-Window RLNC for High Bandwidth-Delay Product Networks
Author:
Affiliation:
1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, South Korea
2. Department of Information and Communication Technologies (DTIC), Universitat Pompeu Fabra (UPF), Barcelona, Spain
Funder
Institute of Information and Communications Technology Planning and Evaluation
Korean Government through the Ministry of Science and Information Communication Technology
National Research Foundation of Korea
Korean Government through MSIT
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10190623.pdf?arnumber=10190623
Reference26 articles.
1. Reinforcement-Learning-Based Overhead Reduction for Online Fountain Codes With Limited Feedback
2. A Federated Reinforcement Learning Framework for Incumbent Technologies in Beyond 5G Networks
3. Reinforcement Learning-Aided Edge Intelligence Framework for Delay-Sensitive Industrial Applications
4. Caching Placement Optimization in UAV-Assisted Cellular Networks: A Deep Reinforcement Learning-Based Framework
5. Learning Based FEC for Non-Terrestrial Networks with Delayed Feedback
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing IoT Services in 6G Non-Terrestrial Networks With Multicast Massive MIMO;IEEE Network;2024-07
2. Survey on TCP Congestion Control in Ad Hoc Wireless Networks;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25
3. What are the key stability challenges in high-bandwidth, non-minimum phase systems with time-varying, and non-smooth delays?;Heliyon;2024-03
4. RS-RLNC: A Reinforcement Learning-Based Selective Random Linear Network Coding Framework for Tactile Internet;IEEE Access;2023
5. Middleware for Distributed Fulcrum Coding on the Fly: Leveraging Efficient Communications for 5G-IoT Heterogeneous Mobile Devices;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3