Variable Correlation Analysis-Based Convolutional Neural Network for Far Topological Feature Extraction and Industrial Predictive Modeling
Author:
Affiliation:
1. School of Automation, Central South University, Hunan, Changsha, China
2. School of Engineering, Huzhou University, Huzhou, China
3. School of Information Science and Engineering, NingboTech University, Ningbo, China
Funder
Program of National Natural Science Foundation of China
CAAI-Huawei MindSpore Open Fund
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Link
http://xplorestaging.ieee.org/ielx7/19/10367905/10458995.pdf?arnumber=10458995
Reference35 articles.
1. Attention-Based Interval Aided Networks for Data Modeling of Heterogeneous Sampling Sequences With Missing Values in Process Industry
2. Multiscale Dynamic Feature Learning for Quality Prediction Based on Hierarchical Sequential Generative Network
3. A systematic approach for soft sensor development
4. Soft Sensors Based on Deep Neural Networks for Applications in Security and Safety
5. A Data-Driven Soft Sensor Modeling Method Based on Deep Learning and its Application
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural network-based hybrid modeling approach incorporating Bayesian optimization with industrial soft sensor application;Knowledge-Based Systems;2024-10
2. Obtaining and qualitative analysis of time-lagged correlations between seawater quality parameters;Measurement Science and Technology;2024-09-06
3. Dual‐noise autoencoder combining pseudo‐labels and consistency regularization for process fault classification;The Canadian Journal of Chemical Engineering;2024-09-03
4. An Efficient Composite Deep Latent Feature Learning Framework With Layerwise Random Mapping for Complicated Industrial Soft Sensor Modeling;IEEE Sensors Journal;2024-09-01
5. Stacked dynamic target regularization enhanced autoencoder for soft sensor in industrial processes;The Canadian Journal of Chemical Engineering;2024-08-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3