Short-Term Wind Power Prediction Based on CEEMDAN and Parallel CNN-LSTM
Author:
Affiliation:
1. Huazhong University of Science and Technology,School of Electrical and Electronic Engineering,Wuhan,China
Funder
State Grid Corporation of China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9948701/9949620/09949917.pdf?arnumber=9949917
Reference18 articles.
1. Learning Heterogeneous Features Jointly: A Deep End-to-End Framework for Multi-Step Short-Term Wind Power Prediction
2. Improved EMD-Based Complex Prediction Model for Wind Power Forecasting
3. Short-Term Wind Power Forecasting Based on VMD Decomposition, ConvLSTM Networks and Error Analysis
4. Wind Speed Forecasting Using the Stationary Wavelet Transform and Quaternion Adaptive-Gradient Methods
5. Dispatch Planning of a Wide-Area Wind Power-Energy Storage Scheme Based on Ensemble Empirical Mode Decomposition Technique
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN;Energy;2024-07
2. Economic optimal control of source-storage collaboration based on wind power forecasting for transient frequency regulation;Journal of Energy Storage;2024-04
3. A Hybrid Model Based on Complete Ensemble Empirical Mode Decomposition With Adaptive Noise, GRU Network and Whale Optimization Algorithm for Wind Power Prediction;IEEE Access;2023
4. Short-Term Voltage Stability Online Assessment Based on Energy Function;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3