Deep Learning Based Sugarcane Downy Mildew Disease Detection Using CNN-LSTM Ensemble Model for Severity Level Classification

Author:

Dhawan Nikhil1,Kukreja Vinay1,Sharma Rishabh1,Vats Satvik2,Verma Aditya3

Affiliation:

1. Chitkara University, Institute of Engineering and Technology, Chitkara University,Punjab,India

2. Graphic Era Hill University,Computer Science and Engineering,Dehradun,Uttarakhand,India

3. Graphic Era Deemed to be University,Computer Science and Engineering,Dehradun,Uttarakhand,India

Publisher

IEEE

Reference18 articles.

1. Detecting Sugarcane Diseases through Adaptive Deep Learning Models of Convolutional Neural Network

2. Sugarcane Disease Detection Using CNN-DL Method;upadhye;International Conference on Emerging Research in Electronics Computer Science and Technology,2022

3. Research Paper On Sugarcane Diseaese Detection Model;kumar;Turkish Journal of Computer and Mathematics Education,2021

4. Sugarcane Classification for On-Site Assessment Using Computer Vision

5. Sugarcane Disease Recognition using DL;militante;IEEE Eurasia Conference on IOT Communication and Engineering,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agricultural Informatics: Assessing CNN and Decision Tree Effectiveness in Indian French Bean Variety Classification;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Enhancing Green Bean Anthracnose Severity Detection via Integrated CNN-LSTM Models;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

3. Enhancing Mango Quality Evaluation: Utilizing an MLP Model for Five-Class Severity Grading;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

4. Enhancing Disease Severity Classification: Unveiling the Complexity of Sugar Maple Tar Spot with CNN-GAN Framework;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

5. From Field to Data: A Machine Learning Approach to Classifying Celery Varieties;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3