Precise PMU-Based Localization and Classification of Short-Circuit Faults in Power Distribution Systems
Author:
Affiliation:
1. Department of Communication Systems, Jožef Stefan Institute, Ljubljana, Slovenia
2. Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
Funder
Javna Agencija za Raziskovalno Dejavnost RS
European Association of National Metrology Institutes
European Commission
I-NERGY
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Link
http://xplorestaging.ieee.org/ielx7/61/10261337/10106028.pdf?arnumber=10106028
Reference28 articles.
1. Real-Time Faulted Line Localization and PMU Placement in Power Systems Through Convolutional Neural Networks
2. Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation
3. Improved Fault Location on Distribution Feeders Based on Matching During-Fault Voltage Sags
4. Detecting the Location of Short-Circuit Faults in Active Distribution Network Using PMU-Based State Estimation
5. Anomaly Detection, Localization and Classification Using Drifting Synchrophasor Data Streams
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Traveling wave method for event localization and characterization of power transmission lines;Electric Power Systems Research;2024-07
2. Microgrid Fault Detection Method Based on Lightweight Gradient Boosting Machine–Neural Network Combined Modeling;Energies;2024-06-02
3. Optimal location of PMUs for full observability of power system using coronavirus herd immunity optimizer;Heliyon;2024-06
4. Synchrophasor Technology Applications and Optimal Placement of Micro-Phasor Measurement Unit (μPMU): Part II;2024 28th International Electrical Power Distribution Conference (EPDC);2024-04-23
5. An Improved Bayesian Learning Method for Distribution Grid Fault Location and Meter Deployment Optimization;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3