Grid-Forming Control of Wind Turbines for Diode Rectifier Unit Based Offshore Wind Farm Integration
Author:
Affiliation:
1. Department of Electrical Engineering, Zhejiang University, Hangzhou, China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Link
http://xplorestaging.ieee.org/ielx7/61/10079224/09916074.pdf?arnumber=9916074
Reference25 articles.
1. Efficiency and Fault Ride-Through Performance of a Diode-Rectifier- and VSC-Inverter-Based HVDC Link for Offshore Wind Farms
2. 2nd generation DC grid access for offshore wind farms: HVDC in an AC fashion;kuhn;Proc Int Council Large Electric Syst,2016
3. Medium frequency diode rectifier unit based HVDC transmission for offshore wind farm integration
4. Parallel Operation of HVDC DRU and VSC Converters for Offshore Wind Farm Connection: Technical and Economic Feasibility
5. Diode-Based HVdc Link for the Connection of Large Offshore Wind Farms
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decoupled Distributed Control of Offshore Wind Farms Connected to DR-HVDC Based on Novel Adaptive Virtual Impedance;IEEE Transactions on Power Electronics;2024-11
2. DRU‐HVDC for offshore wind power transmission: A review;IET Renewable Power Generation;2024-07-18
3. Decoupled Power and Frequency Control of Offshore Wind Farms Connected With DR-HVDC Based on Consensus Algorithm;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17
4. Research on Energy Storage Control Strategy for Offshore Wind Power Considering the SOC;2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET);2024-05-17
5. Research on active power control strategy for offshore wind power based on multiple time scales;2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET);2024-05-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3