Synthesis and Biomedical Activity of Aluminium Oxide Nanoparticles by Laser Ablation Technique

Author:

Sabah Tuqa1,H. Jawad Kareem1,Al-attar Nebras1

Affiliation:

1. Department of Laser and Optoelectronics Engineering, University of Technology – Iraq.

Abstract

Aluminium oxide (Al2O3) nanoparticles (NPs) were formed via laser ablation of an aluminium target in deionised water (DIW) (Nd: YAG laser; wavelength: 1,064nm; different laser energies: 500, 800 and 1000 mJ; 30min). The optical, structural and morphological features of these Al2O3 NPs were investigated via ultraviolet/visible (UV/Vis) spectroscopy, scanning electron microscopy; X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Show that the average size of nanoparticles was between (21-48nm). The antibacterial activities of Al2O3 NPs were produced by utilising the well diffusion method against two pathogens (Pseudomonas aeruginosa and Bacillus cereus). Al2O3 NPs demonstrated significant antibacterial activity against P. aeruginosa and B. cereus compared with the control (P≤0.05). Al2O3 NPs had the best energy at 1000 mJ, indicating that they were more effective towards Gram +ve than Gram -ve bacteria. The synergistic/antibacterial activity of Al2O3 NPs exhibited potential antibacterial activity against the investigated species after being combined with imipenem and gentamicin, which had higher antibacterial action than Al2O3 NPs alone. Furthermore, as determined by DPPH, results suggested that Al2O3 NPs have antioxidant properties. Finally, Al2O3 NPs were tested for cytotoxicity against the breast cancer cell line (MCF-7), where 500mJ was 62.33±2.33, 800 mJ was 73.00±2.082 and 1000mJ was 85.00 ±1.732. The last was more effective than 500 mJ and 800 mJ and more efficient in penetrating cell membrane.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3