Using artificial intelligence algorithms to approximate data from inertial measurement unit sensors and strain gauges in basketball players

Author:

Barskova Ekaterina M.1ORCID,Kuklev Aleksandr D.1ORCID,Polukarov Nikolay V.1ORCID,Achkasov Evgeny E.1ORCID

Affiliation:

1. The First Sechenov Moscow State Medical University

Abstract

BACKGROUND: The process of acquiring visual data from microelectromechanical sensors currently requires significant time and effort on the part of the clinician. The use of artificial intelligence algorithms to approximate data could potentially reduce the time required and increase the amount of work performed. AIM: The aim of this study is to approximate the data generated by sensors located in the shoe insole of basketball athletes and to compare the change in movement parameters of athletes when using CAD/CAM insoles. MATERIALS AND METHODS: Prior to the commencement of the study, permission was obtained from the local ethical committee of Sechenov University (protocol No. 19–23). The main cohort consisted of 39 athletes, comprising 21 men (53%) and 18 women (47%). The mean age of the athletes was 22.4 ± 7.54 years. The athletes were divided into three equal comparison groups according to the type of insoles they were wearing. Throughout the study period, all athletes remained healthy and free from injuries. The assessment of movement in space was conducted using a three-test system. This involved the use of microelectromechanical system sensors with an artificial intelligence algorithm, which facilitated the construction of visually clear and well-interpreted median lines (data approximation). RESULTS: For objective assessment of jumping characteristics, angular changes, velocity movements in space, and a comparison of all parameters on days 0 and 21, we developed and used our own software system, which was based on mathematical algorithmization and transformation formulas on specific axes. All data were entered into a neural network to construct averaged values of the parameters of movement in space. This approach allows the doctor to evaluate the changes of each peak movement on three different axes. Furthermore, it is possible to summarize the athlete's movement parameters with the aid of artificial intelligence, thereby enabling the detection of changes in different axes on days 0 and 21. Insole model C-1 exhibited the following improvements: X-axis movement speed (+7.7%), Y-axis jump height (+17.3%), endurance (+3.1%), and a 1.43-fold enhancement in shock absorption. Insole model C-2 exhibited an 8.4% increase in X-axis travel speed, a 20.8% enhancement in Y-axis jump height, a 6.6% improvement in endurance, and a 1.48-fold enhancement in shock absorption. Insole model C-3 demonstrated an 13.5% surge in X-axis travel speed, a 22.4% surge in Y-axis jump height, a 9.5% surge in endurance, and a 1.53-fold enhancement in shock absorption. CONCLUSIONS: The approximation of the data (median lines using an artificial intelligence algorithm) allows for the straightforward interpretation and comparison of various parameters, as well as the drawing of conclusions regarding the efficacy of individual sports CAD/CAM insoles. Additionally, it enables the assessment of changes in endurance, speed of movement during prolonged and intensive movement, and the reduction of the risk of impact loads on the musculoskeletal system of the athlete.

Publisher

ECO-Vector LLC

Reference18 articles.

1. Preventing Bone Stress Injuries in Runners with Optimal Workload

2. Performance Adaptations to Intensified Training in Top-Level Football

3. Zhukova EV, Achkasov EE, Polukarov NV. Influence of the individual approach of conservative therapy of flatfoot on reducing the pain syndrome and improving the quality of life of patients. Bulletin of Rehabilitation Medicine. 2019;5(93):74–80. EDN: ZKGTWQ

4. Design and development of fused deposition modeling (FDM) 3D-Printed Orthotic Insole by using gyroid structure

5. Exploring the mechanical properties of 3D-printed multilayer lattice structures for use in accommodative insoles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3